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NOTE

Trajectories of Trapped Particles in the Field of a Plasma Wave
Excited by a Stimulated Raman Scattering

Trajectories of particles trapped and accelerated in the field of plasma
waves generated by stimulated Raman scattering are calculated self-
consistently by a leapfrog scheme using the electromagnetic field com-
puted in a Vlasov simulation. The trajectories of the particles trapped in
the field of the plasma wave agree with the contour plots of the dis-
tribution function calculated by the Vlasov code. These results provide
a powerful method to study the trapping and escaping of particles in
the field of the plasma wave,  © 1993 Academic Press, Inc,

We study the problems of beatwave acceleration and
current drive using Viasov simulation [1, 27]. These codes
provide a powerfu! tool to represent the low density regions
of phase-space, which are very coarsely delineated in par-
ticle codes. Specially, Ref. [1] presents a detailed represen-
tation of the formation of vortices in the field of the plasma
wave generated in a stimulated Raman scattering. The
calculation of the separatrix from the Hamiltonian obtained
from the self-consistent field computed with the solution of
the Vlasov equation showed a very good agreement with
the formation of the vortex structure [1]. The question
then arises of whether one can follow the trajectories of
individual particles trapped and accelerated by the plasma
wave and compare these trajectories with the contour plots
obtained from the Vlasov code simulation during the forma-
tion of the vortices in the field of the same plasma wave, The
present work shows results obtained by integrating particle
trajectories, using a leapfrog scheme, in the self-consistent
field obtained from the solution of the Vlasov—Maxwell set
of equations. The trajectories of the particles trapped in the
field of the plasma wave conform well with the contour plots
of the distribution function calculated by the Vlasov code.
These results provide a powerful method to study the trap-
ping and the escape of particles in the field of the plasma
wave, where the trajectories of the particles and the fields

tion for the electron plasma distribution function f{(x, p., )
is given by
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with the Lorentz factor y={l+ p2/m?c*)'%, such that
p .= myu_. In the perpendicular y direction, we assume only
a fluid monokinetic description. The terms u (du,/dx ) and
u, B_ simplily exactly [2], so that the relevant macroscopic
equation for u, reduces to

{2)

The ions are immobile. The transverse electromagnetic
fields obey Maxwell’s equation as discussed in Ref. [2]. The
trajectories of the particles are obtained by integrating the
equations of the characteristics from Eq. (1)

dx
PR (3)
Ps F)= B+, B, )

together with Eq. (2). The force F(x) is directly computed
by the Vlasov code [3]. These equations are then integrated
using a leapfrog scheme,

are free from the usual statistical fluctuations associated X" = x"=ut VA (5)
with particles in cell codes.
The pertinent equations have been previously presented and
[1, 3]. We write these equations here again in order to fix
the notation for the particles integration. The Vlasov equa- R pt T = A F(x™), (6)
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Phase-space representation of the trapping region of the distribution function at different times, in a frame moving at the phase velocity of

the wave. The different particles whose positions and velocities are calculated are numbered from | to 12.

where F(x")is calculated by a linear interpolation scheme at
time ¢, =n Ar using the data computed by the Vlasov code
at grid points. A7 =0.0818w ' as in Ref. [1].

Figure 1 shows the phase-space plane at different times in
a frame moving with a phase velocity of the wave obtained
from the solution of the Vlasov equation with the same
parameters as in Ref [1]. These figures have been pre-
sented in Ref. [1]. For reference, the electric field is given in
Fig. 2 at different times, and the position of the window
which is viewed in Fig. | is indicated by an arrow in Fig. 2.
Figure 1 contains also the position of different particles
(numbered from 1 to 12) whose positions and velocities are
calculated using the leapfrog scheme presented in the pre-
vious section. The trajectories of the particles follow closely
the contours of the distribution function, even when the
vortices formed by the trapped particules have spiraled

several times. For w1 of 356.0 and higher, Fig. 1 shows also
the distribution functions associated with the phase-space at
the top of the figures.

One aspect of interest is the behavior at marginal trap-
ping. Here, for example, two particles, Nos. 6 and 10, barely
not trapped at w,!=2094 or w,t=2723, arc trapped
between ¢, ¢ values of 230.3 and 251.3. However, their fates
after that are quite different. The wave amplitude is drop-
ping, but at w7 value of 314.1 particle 6 remains trapped
inside the trapping phase space vortex, while its neigh-
bouring particle 10 becomes involved in the fold developing
at the X-point and escapes to higher energies, now traveling
on top of the vortices. Another example of interesting
behavior is that of particles deeply trapped near the inside
tip, where particles 1 and 2 seem te be alternating position
each time the trapping spiral vortex adds another half turn,
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FIG. 1—Continued

indicating some internal rotation not evident in the phase
space structure itself.

Contour plots of the distribution function calculated by
the integration of the Vlasov equation, have shown the for-
mation of spiral structure and vortices in the phase-space
region corresponding to the phase velocity of the plasma
wave excited by a stimulated Raman scattering [1). The
calculation of the separatrix from the Hamiltonian obtained
from the seif-consistent field computed with the solution of
the Vlasov equation shows a very good agreement with the
formation of the vortex structure [17, an indication of the
good performance of the numerical scheme used to integrate
the Vlasov equation, In the present work, we have followed
the trajectories of particles trapped and accelerated by the
plasma wave, and we compare these trajectories with the
contour plots obtained from the Vlasov code simulation

during the formation of the spiraling vortices in the field of
the same plasma wave. The very good agreement obtained
is an additional indication of the very good performance of
the numerical code. This agreement (for the case with small
time-step 4t =0.0818w, ' that we are studying) indicates
also that the linear interpolation scheme for the calculation
of the trajectories of these “marker” particles is performing
nicely and is accurate enough. What effect, if any, would a
higher interpolation scheme (quadratic or cubic spline)
have on the behavior of barely trapped or barely passing
particles (such as 6 and 10 in the figures) is a point which
requires further mvestigation. We expect, however, that for
a large number of particles, this effect to be quantitatively
minimal. Only those few “marker” particles with trajectories
very close to the separatrix will probably be affected. Note
also that the separatrix is not exactly constant, but oscil-
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FIG. 2. Electric field at the different times selected in Fig. 1. The
position of the window which is viewed in Fig. 1 is indicated by an arrow.

lating and continuously sweeping the phase-space region
in its close neighborhood. It is beyond the scope of this
presentation to discuss in more detail this separatrix
crossing, detrapping, and folding in phase-space, but we
note the relevance of the work by Cary, Escande, and
Tennyson (Ref. [4] and references cited therein). The
present work, however, indicates clearly that the combina-
tion of “marker” particles with Vlasov selution is 2 powerful
tool to show some insight into trapping.
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